Centrosome-independent mitotic spindle formation in vertebrates

نویسندگان

  • Alexey Khodjakov
  • Richard W. Cole
  • Berl R. Oakley
  • Conly L. Rieder
چکیده

BACKGROUND In cells lacking centrosomes, the microtubule-organizing activity of the centrosome is substituted for by the combined action of chromatin and molecular motors. The question of whether a centrosome-independent pathway for spindle formation exists in vertebrate somatic cells, which always contain centrosomes, remains unanswered, however. By a combination of labeling with green fluorescent protein (GFP) and laser microsurgery we have been able to selectively destroy centrosomes in living mammalian cells as they enter mitosis. RESULTS We have established a mammalian cell line in which the boundaries of the centrosome are defined by the constitutive expression of gamma-tubulin-GFP. This feature allows us to use laser microsurgery to selectively destroy the centrosomes in living cells. Here we show that this method can be used to reproducibly ablate the centrosome as a functional entity, and that after destruction the microtubules associated with the ablated centrosome disassemble. Depolymerization-repolymerization experiments reveal that microtubules form in acentrosomal cells randomly within the cytoplasm. When both centrosomes are destroyed during prophase these cells form a functional bipolar spindle. Surprisingly, when just one centrosome is destroyed, bipolar spindles are also formed that contain one centrosomal and one acentrosomal pole. Both the polar regions in these spindles are well focused and contain the nuclear structural protein NuMA. The acentrosomal pole lacks pericentrin, gamma-tubulin, and centrioles, however. CONCLUSIONS These results reveal, for the first time, that somatic cells can use a centrosome-independent pathway for spindle formation that is normally masked by the presence of the centrosome. Furthermore, this mechanism is strong enough to drive bipolar spindle assembly even in the presence of a single functional centrosome.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Rate of Bipolar Spindle Assembly Depends on the Microtubule-Gliding Velocity of the Mitotic Kinesin Eg5

During early embryonic cycles, the time required for mitotic spindle assembly must match the autonomous cell cycle oscillations because a lack of coordination between these two processes will result in chromosome segregation errors. Members of the widely conserved BimC kinesin family are essential for spindle formation in all eukaryotes, and complete loss of BimC function results in monopolar s...

متن کامل

Centrosome positioning in vertebrate development.

The centrosome, a major organizer of microtubules, has important functions in regulating cell shape, polarity, cilia formation and intracellular transport as well as the position of cellular structures, including the mitotic spindle. By means of these activities, centrosomes have important roles during animal development by regulating polarized cell behaviors, such as cell migration or neurite ...

متن کامل

New frontiers: discovering cilia-independent functions of cilia proteins.

In most vertebrates, mitotic spindles and primary cilia arise from a common origin, the centrosome. In non-cycling cells, the centrosome is the template for primary cilia assembly and, thus, is crucial for their associated sensory and signaling functions. During mitosis, the duplicated centrosomes mature into spindle poles, which orchestrate mitotic spindle assembly, chromosome segregation, and...

متن کامل

The mitotic spindle and actin tails.

To segregate their chromosomes, eukaryotic cells rely on a dynamic structure made of microtubules: the mitotic spindle. This structure can form in cells lacking centrosomes, because their chromosomes also nucleate microtubules. This second assembly pathway is observed even in some cells that naturally have centrosomes, for example when the centrosomes are ablated by laser surgery. Recent result...

متن کامل

Amphiastral Mitotic Spindle Assembly in Vertebrate Cells Lacking Centrosomes

The role of centrosomes and centrioles during mitotic spindle assembly in vertebrates remains controversial. In cell-free extracts and experimentally derived acentrosomal cells, randomly oriented microtubules (MTs) self-organize around mitotic chromosomes and assemble anastral spindles. However, vertebrate somatic cells normally assemble a connected pair of polarized, astral MT arrays--termed a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current Biology

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2000